- (b) Each tankship that has a cargo tank with a required cooling system must have a manual that contains: - (1) A piping diagram for the cooling system; and - (2) Instructions for changing over to the standby system described in paragraph (a) of this section. [CGD 73-96, 42 FR 49027, Sept. 26, 1977, as amended by CGD 78-128, 47 FR 21209, May 17, 1982] ### §153.434 Heat transfer coils within a tank. When a cargo tank contains any quantity of cargo, a cargo cooling or heating system having coils within the tank must keep the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling system by the cargo. [CGD 78-128, 47 FR 21209, May 17, 1982] ### §153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil within a tank) must be compatible with the cargo under the standards prescribed for compatibility between two cargoes in Part 150 of this chapter. [CGD 81-078, 50 FR 21174, May 22, 1985] ### §153.438 Cargo pressure or temperature alarms required. - (a) Each refrigerated tank must have: (1) An alarm that operates when the cargo's pressure exceeds the vapor - (2) An alarm that operates when the cargo's temperature exceeds the steady state temperature described in §153.371(b). pressure described in §153.371(b); or - (b) The alarm must give an audible and visual signal on the bridge and at the cargo control station. - (c) The cargo pressure or temperature alarm must be independent of other cargo pressure or temperature sensing arrangements. #### §153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c) of this section, when Table 1 refers to this section, the containment system must meet the following requirements: - (1) A heated or refrigerated cargo tank must have a remote reading thermometer sensing the temperature of the cargo at the bottom of the tank. - (2) A refrigerated tank must have a remote reading second thermometer near the top of the tank and below the maximum liquid level allowed by §153.981. - (3) Unless waived under §153.491(a), a cargo tank endorsed to carry a Category A, B, or C NLS cargo must have a thermometer whose temperature reading is no greater than the temperature of the cargo at a level above the tank bottom at least one-eighth but no more than one-half the height of the tank if the cargo is— - (i) A Category A NLS or a Category B NLS having a viscosity of at least 25 mPa.s at 20 $^{\circ}\text{C}$; - (ii) A Category C NLS having a viscosity of at least 60 mPa.s at 20 °C; or - (iii) A Category A, B, or C NLS that has a melting point greater than 0 °C. - (b) A readout for each remote thermometer required by this section must be at the point where cargo transfer is controlled. - (c) A portable thermometer may be substituted for the equipment required in paragraphs (a) and (b) of this section if— - (1) Table 1 allows open gauging with the cargo; or - (2) Table 1 allows restricted gauging with the cargo, and the portable thermometer is designed to be used through the containment system's restricted gauging system. [CGD 78-128, 47 FR 21209, May 17, 1982, as amended by CGD 81-101, 52 FR 7781, Mar. 12, 1987; CGD 81-101, 53 FR 28974, Aug. 1, 1988 and 54 FR 12629, Mar. 28, 1989] SPECIAL REQUIREMENTS FOR FLAMMABLE OR COMBUSTIBLE CARGOES ### $\S 153.460$ Fire protection systems. Each self-propelled ship and each manned non-self-propelled ship must meet the following: (a) With the exception of the vent riser, each part of a cargo containment system exposed on the weatherdeck must be covered by the fire protection system listed beside the cargo in Table 1 and described in the footnotes to Table 1. #### § 153.461 - (b) The Commandant (G-MSO) approves the substitution of a dry chemical (D) type fire protection system for an A or B type on a case by case basis. - (c) A fire protection system required by this part must meet part 34 of this chapter or be specifically approved by the Commandant (G-MSO). [CGD 73-96, 42 FR 49027, Sept. 26, 1977, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983; CGD 81-101, 52 FR 7781, Mar. 12, 1987] ### §153.461 Electrical bonding of independent tanks. An independent metallic cargo tank that carries a flammable or combustible cargo must be electrically bonded to the tankship's hull. ### §153.462 Static discharges from inert gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must not create static arcing as the inert gas is injected into the tank. #### §153.463 Vent system discharges. The discharge of a venting system must be at least 10 m (approx. 32.8 ft) from an ignition source if: - (a) The cargo tank is endorsed to carry a flammable or combustible cargo; and - (b) Table 1 requires the cargo to have a PV venting system. #### §153.465 Flammable vapor detector. - (a) A tankship that carries a flammable cargo must have two vapor detectors that meet §35.30–15(b) of this chapter. - (b) At least one of the vapor detectors in paragraph (a) of this section must be portable. #### §153.466 Electrical equipment. A tankship carrying a flammable or combustible cargo under this part must meet subchapter J of this chapter. DESIGN AND EQUIPMENT FOR POLLUTION CONTROL SOURCE: Sections 153.470 through 153.491 appear at CGD 81–101, 52 FR 7781, Mar. 12, 1987, unless otherwise noted. ## §153.470 System for discharge of NLS residue to the sea: Categories A, B, C, and D. Unless waived under §153.491, each ship that discharges Category A, B, or C NLS residue, or Category D NLS residue not diluted to ¼oth of its original concentration, into the sea under \$\\$153.1126 and 153.1128 must have an NLS residue discharge system meeting the following: (a) Minimum diameter of an NLS residue discharge outlet. The outlet of each NLS residue discharge system must have a diameter at least as great as that given by the following formula: $$D = \frac{(Q_d)(cosine \ \phi)}{5L}$$ where: D=Minimum diameter of the discharge outlet in meters. - Q_d =Maximum rate in cubic meters per hour at which the ship operator wishes to discharge slops (note: Q_d affects the discharge rate allowed under §153.1126(b)(2)). - L=Distance from the forward perpendicular to the discharge outlet in meters. - \$\phi\$=The acute angle between a perpendicular to the shell plating at the discharge location and the direction of the average velocity of the discharged liquid. **The acute angle between a perpendicular to the discharge acute ac - (b) Location of an NLS residue discharge outlet. Each NLS residue discharge outlet must be located— - (1) At the turn of the bilge beneath the cargo area; and - (2) Where the discharge from the outlet is not drawn into the ship's seawater intakes. - (c) Location of dual NLS residue discharge outlets. If the value of 6.45 for K is used in §153.1126(b)(2), the NLS residue discharge system must have two outlets located on opposite sides of the ship. [CGD 81-101, 52 FR 7781, Mar. 12, 1987, as amended by CGD 81-101, 53 FR 28974, Aug. 1, 1988 and 54 FR 12629, Mar. 28, 1989; CGD 95-028, 62 FR 51209, Sept. 30, 1997] # §153.480 Stripping quantity for Category B and C NLS tanks on ships built after June 30, 1986: Categories B and C. Unless waived under §153.491, Category B and C NLS cargo tanks on each ship built after June 30, 1986 must have